2,315 research outputs found

    Cardiac myosin contraction and mechanotransduction in health and disease

    Get PDF
    Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin\u27s functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction

    Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine

    Get PDF
    Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies

    Nitric Oxide Mediates Seasonal Muscle Potentiation in Clam Gills

    Get PDF
    The physiology and timing of gill muscle potentiation were explored in the clam Mercenaria mercenaria. When isolated demibranchs were exposed twice (with an intervening wash) to the same concentration of 5-hydroxytryptamine, the second contraction was larger than the first. This potentiation was seasonal: it was present from November through June, and absent from July through October. Potentiation was not affected by the geographic origin of the clams, nor by their acclimation temperature. Potentiation was inhibited by the nitric oxide synthase (NOS) inhibitor L-NAME and mimicked by the nitric oxide (NO) donor DEANO. During the season of potentiation, immunoreactive NOS appeared in the gill muscles and the gill filament epithelium, but during the off-season, the enzyme occurred at the base of the gill filaments. Potentiation was inhibited by ODQ, which inhibits soluble guanylate cyclase (sGC), and it was mimicked by dibutyryl-cGMP, an analog of cyclic GMP (cGMP). Moreover, potentiation was inhibited by the protein kinase G (PKG) inhibitor Rp-8-CPT-cGMPS. During the season of potentiation, immunoreactive sGC was concentrated in the gill muscles and the gill filament epithelium; but during the off-season, immunoreactive sGC was found in the gill filament epithelium. These data suggest that the potentiation of gill muscle is mediated by a NO/cGMP/PKG signaling pathway

    Poster 277: Cervical Transforaminal Epidural Steroid Injection in the Management of a Stinger Injury: A Case Report

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146964/1/pmr2s124a.pd

    Cystic Fibrosis Airway Epithelia Fail to Kill Bacteria Because of Abnormal Airway Surface Fluid

    Get PDF
    AbstractDespite an increased understanding of the cellular and molecular biology of the CFTR Cl− channel, it is not known how defective Cl− transport across airway epithelia causes chronic bacterial infections in cystic fibrosis (CF) airways. Here, we show that common CF pathogens were killed when added to the apical surface of normal airway epithelia. In contrast, these bacteria multiplied on CF epithelia. We found that bactericidal activity was present in airway surface fluid of both normal and CF epithelia. However, because bacterial killing required a low NaCl concentration and because CF surface fluid has a high NaCl concentration, CF epithelia failed to kill bacteria. This defect was corrected by reducing the NaCl concentration on CF epithelia. These data explain how the loss of CFTR Cl− channels may lead to lung disease and suggest new approaches to therapy

    Genetic and environmental influences on eating behavior - a study of twin pairs reared apart or reared together

    Get PDF
    This study examined the relative influence of genetic versus environmental factors on specific aspects of eating behavior. Adult monozygotic twins (22 pairs and 3 singleton reared apart, 38 pairs and 9 singleton reared together, age 18-76 years, BMI 17-43 kg/m2) completed the Three Factor Eating Questionnaire. Genetic and environmental variance components were determined for the three eating behavior constructs and their subscales using model-fitting univariate and multivariate analyses. Unique environmental factors had a substantial influence on all eating behavior variables (explaining 45-71% of variance), and most strongly influenced external locus for hunger and strategic dieting behavior of restraint (explaining 71% and 69% of variance, respectively). Genetic factors had a statistically significant influence on only 4 variables: restraint, emotional susceptibility to disinhibition, situational susceptibility to disinhibition, and internal locus for hunger (heritabilities were 52%, 55%, 38% and 50%, respectively). Common environmental factors did not statistically significantly influence any variable assessed in this study. In addition, multivariate analyses showed that disinhibition and hunger share a common influence, while restraint appears to be a distinct construct. These findings suggest that the majority of variation in eating behavior variables is associated with unique environmental factors, and highlights the importance of the environment in facilitating specific eating behaviors that may promote excess weight gain.R01 AR046124 - NIAMS NIH HHS; R01 MH065322 - NIMH NIH HHS; T32 HL069772 - NHLBI NIH HHS; R37 DA018673 - NIDA NIH HHS; R01 DK073321 - NIDDK NIH HHS; R01 DA018673 - NIDA NIH HH

    Calcium Regulation of Myosin-I Tension Sensing

    Get PDF
    AbstractMyo1b is a myosin that is exquisitely sensitive to tension. Its actin-attachment lifetime increases > 50-fold when its working stroke is opposed by 1 pN of force. The long attachment lifetime of myo1b under load raises the question: how are actin attachments that last >50 s in the presence of force regulated? Like most myosins, forces are transmitted to the myo1b motor through a light-chain binding domain that is structurally stabilized by calmodulin, a calcium-binding protein. Thus, we examined the effect of calcium on myo1b motility using ensemble and single-molecule techniques. Calcium accelerates key biochemical transitions on the ATPase pathway, decreases the working-stroke displacement, and greatly reduces the ability of myo1b to sense tension. Thus, calcium provides an effective mechanism for inhibiting motility and terminating long-duration attachments
    • …
    corecore